Renal Failure In CLTI Patients Should Not Be A Contraindication To Limb Salvage Attempts A

Vincent L. Rowe, M.D., F.A.C.S. Professor and Chief Gonda (Goldschmied) Vascular Center Division of Vascular and Endovascular Surgery

UCLA Health David Geffen School of Medicine **No Financial Disclosures**

UCLA Health Bavid Geffen School of Medicine

	30 ≤ eGFR < 60 HR (95% CI)	P value	eGFR < 30 HR (95% CI)	P value
Above Ankle Amputation	1.10(0.77,1.57)	0.608	1.88(1.34,2.64)	<0.001
All-Cause Mortality	1.31(1.07,1.62)	0.011	3.46(2.80,4.27)	<0.001
MALE	0.92(0.72,1.18)	0.516	1.41(1.09,1.83)	0.010
MALE or All-Cause Mortality	1.08(0.91,1.29)	0.389	2.03(1.68,2.43)	<0.001
Major Reintervention	0.68(0.49,0.95)	0.022	0.87(0.61,1.26)	0.468
Any Reintervention	0.82(0.67,1.01)	0.061	1.02(0.80,1.29)	0.868
MACE	1.20(0.99,1.46)	0.063	2.80(2.30,3.42)	<0.001

(
	30 ≤ cGFR < 60 HR (95% CI)	P value	eGFR < 30 HR (95% CI)	P value	
bove Ankle Amputation	1.10(0.77,1.57)	0.608	1.88(1.34,2.64)	<0.001	
ll-Cause Mortality	1.31(1.07,1.62)	0.011	3.46(2.80,4.27)	<0.001	
IALE	0.92(0.72,1.18)	0.516	1.41(1.09,1.83)	0.010	
IALE or All-Cause Mortality	1.08(0.91,1.29)	0.389	2.03(1.68,2.43)	<0.001	
lajor Reintervention	0.68(0.49,0.95)	0.022	0.87(0.61,1.26)	0.468	
ny Reintervention	0.82(0.67,1.01)	0.061	1.02(0.80,1.29)	0.868	
IACE	1.20(0.99,1.46)	0.063	2.80(2.30,3.42)	<0.001	

Outcomes stratified by eGFR groups (ref group is eGFR≥ 60)					
	30 ≤ eGFR < 60 HR (95% CI)	P value	eGFR < 30 HR (95% CI)	P value	
Above Ankle Amputation	1.10(0.77,1.57)	0.608	1.88(1.34,2.64)	<0.001	
All-Cause Mortality	1.31(1.07,1.62)	0.011	3.46(2.80,4.27)	<0.001	
MALE	0.92(0.72,1.18)	0.516	1.41(1.09,1.83)	0.010	
MALE or All-Cause Mortality	1.08(0.91,1.29)	0.389	2.03(1.68,2.43)	<0.001	
Major Reintervention	0.68(0.49,0.95)	0.022	0.87(0.61,1.26)	0.468	
Any Reintervention	0.82(0.67,1.01)	0.061	1.02(0.80,1.29)	0.868	
MACE	1.20(0.99,1.46)	0.063	2.80(2.30,3.42)	<0.001	

Outcomes stratified by eGFR groups (ref group is eGFR≥ 60)				
	30 ≤ eGFR < 60 HR (95% CI)	P value	cGFR < 30 HR (95% CI)	P value
Above Ankle Amputation	1.10(0.77,1.57)	0.608	1.88(1.34,2.64)	<0.001
All-Cause Mortality	1.31(1.07,1.62)	0.011	3.46(2.80,4.27)	<0.001
MALE	0.92(0.72,1.18)	0.516	1.41(1.09,1.83)	0.010
MALE or All-Cause Mortality	1.08(0.91,1.29)	0.389	2.03(1.68,2.43)	<0.001
Major Reintervention	0.68(0.49,0.95)	0.022	0.87(0.61,1.26)	0.468
Any Reintervention	0.82(0.67,1.01)	0.061	1.02(0.80,1.29)	0.868
MACE	1.20(0.99,1.46)	0.063	2.80(2.30,3.42)	<0.001

Outcomes stratified by eGFR groups (ref group is eGFR≥ 60)				
	30 ≤ cGFR < 60 HR (95% CI)	P value	eGFR < 30 HR (95% CI)	P value
Above Ankle Amputation	1.10(0.77,1.57)	0.608	1.88(1.34,2.64)	<0.001
All-Cause Mortality	1.31(1.07,1.62)	0.011	3.46(2.80,4.27)	<0.001
MALE	0.92(0.72,1.18)	0.516	1.41(1.09,1.83)	0.010
MALE or All-Cause Mortality	1.08(0.91,1.29)	0.389	2.03(1.68,2.43)	<0.001
Major Reintervention	0.68(0.49,0.95)	0.022	0.87(0.61,1.26)	0.468
Any Reintervention	0.82(0.67,1.01)	0.061	1.02(0.80,1.29)	0.868
MACE	1.20(0.99,1.46)	0.063	2.80(2.30,3.42)	<0.001

UCLA Health	David Geffen School of Medicine
-------------	------------------------------------

Author	Year	Title	Functional ambulatory definitions	Outcomes/Conclusions	
rykberg ¹	1998	Functional outcome in the elderly following lower extremity amputation	1: independent 2: cane/walker 3: wheelchair 4: bed bound	After amputation, functional outcome worsened in 55% and there was a statistically significant difference in average preoperative functional score compared to postoperative	
lehler²	2003	Functional outcome in a contemporary series of major lower extremity amputations	-Outdoors -Indoors only -Non-ambulatory	Less than one third of surviving patients ambulated outdoors, and almost all had undergone BKA. At 18 months postoperatively, 46% were non-ambulatory Only 42% used a prosthesis.	
aylor ³	2005	Preoperative clinical factors predict postoperative functional outcomes after major lower limb amputation: 553 consecutive patients	-Ambulatory -Ambulatory/homebound -Non-ambulatory/transfer -Non-ambulatory/bedridden	66.6% of BKA maintained preoperative ambulation status 44.5% of AKA maintained preoperative ambulation status Patients with limited preoperative ambulation and other comorbidities have worse outcomes and may be served better with palliative amputation.	
uckow ⁴	2012	Predicting functional status following amputation after lower extremity bypass	-Independent -With assistance (use of assistive device) -Wheelchair bound -Bedridden	A good functional outcome was defined as living at home and ambulating independently. 88% of patients without an amputation 55% patients with a BKA 45% of patients with AKA	
hopra ^s	2018	Ambulation and functional outcome after major lower extremity amputation	 Able to walk* safely and sufficiently to carry out mobility- related activities of daily living Not able to walk* safely and sufficiently to carry out mobility- related activities of daily living 	Post-amputation ambulatory rate was 46.1%. None of the patients who were non-ambulatory preoperatively became ambulatory postoperatively. Non-ambulatory patients had lower 1-year survival (75% vs. 90%, p=0.04).	

Author	Year	Title	Functional ambulatory definitions	Outcomes/Conclusions	
Frykberg ¹	1998	Functional outcome in the elderly following lower extremity amputation	1: independent 2: cane/walker 3: wheelchair 4: bed bound	After amputation, functional outcome worsened in 55% and there was a statistically significant difference in average preoperative functional score compared to postoperative	
Nehler ²	2003	Functional outcome in a contemporary series of major lower extremity amputations	-Outdoors -Indoors only -Non-ambulatory	Less than one third of surviving patients ambulated outdoors, and almost all had undergone BKA. At 18 months postoperatively, 46% were non-ambulatory Only 42% used a prosthesis.	
Taylor ³	2005	Preoperative clinical factors predict postoperative functional outcomes after major lower limb amputation: 553 consecutive patients	-Ambulatory -Ambulatory/homebound -Non-ambulatory/transfer -Non-ambulatory/bedridden	66.6% of BKA maintained preoperative ambulation status 44.5% of AKA maintained preoperative ambulation status Patients with limited preoperative ambulation and other comorbidities have worse outcomes and may be served better with palliative amputation.	
Suckow ⁴	2012	Predicting functional status following amputation after lower extremity bypass	-Independent -With assistance (use of assistive device) -Wheelchair bound -Bedridden	A good functional outcome was defined as living at home and ambulating independently. 88% of patients without an amputation 55% patients with a BKA 45% of patients with AKA	
Chopra ⁶	2018	Ambulation and functional outcome after major lower extremity amputation	 Able to walk* safely and sufficiently to carry out mobility- related activities of daily living Not able to walk* safely and sufficiently to carry out mobility- related activities of daily living 	Post-amputation ambutatory rate was 46.1%. None of the patients who were non-ambulatory preoperatively became ambutatory postoperatively. Non-ambulatory patients had lower 1-year survival (75% vs. 90%, p=0.4).	

		1-y Mortality Rate, % (95%	5 CI)
	Cohort Year	Unadjusted	Adjusted
	2000	52.3 (51.0-53.7)	52.2 (50.9-53.4)
Uppelineted and Adjusted 1	2001	52.6 (51.3-53.8)	51.9 (50.7-53.1)
Unadjusted and Adjusted 1-	2002	53.7 (52.5-54.9)	52.5 (51.4-53.6)
Year Mortality Rates After	2003	52.5 (51.4-53.7)	51.5 (50.4-52.5)
Lower Extremity Amputation	2004	52.7 (51.6-53.8)	51.7 (50.7-52.8)
Among Patients With End-	2005	50.1 (49.0-51.2)	49.7 (48.6-50.7)
stage Renal Disease Who	2006	51.3 (50.2-52.4)	50.9 (49.8-51.9)
Receive Dialysis Stratified by	2007	48.4 (47.2-49.5)	48.2 (47.1-49.3)
C L L L V	2008	48.0 (46.8-49.2)	48.1 (47.0-49.2)
Cohort Year	2009	47.3 (46.2-48.5)	47.8 (46.7-48.9)
	2010	46.0 (44.9-47.1)	46.4 (45.3-47.5)
JAMA Intern Med 2018	2011	44.5 (43.3-45.6)	45.2 (44.1-46.3)
Aug 1,176(6).1025-1032	2012	43.1 (42.0-44.3)	43.9 (42.7-45.0)
UCLA Health David Geffen School of Medicine	2013	42.6 (41.5-43.8)	43.6 (42.5-44.8)

Conclusion

- CLTI patients with ESRD pose a significant challenge in limb salvage
- Higher: Amputations, MACE, MALE, Mortality, reinterventions
- Amputations are more devastating
- Amputations in ESRD patients may be decreasing
- $\ensuremath{\cdot}$ Technical advances will help in saving limbs

UCLA Health David Geffen School of Medicine