Technical Tips & Lessons Learned to Make In-Situ Bypasses More Effective and Effective

> R. Clement Darling III M.D. Chief, Division of Vascular Surgery Professor of Surgery Director, The Institute for Vascular Health and Disease Albany Medical Center , Albany, NY Past-President, Society for Vascular Surgery Chair, SVS/ACS Inpatient Vascular Verification Program

No Disclosures

 Thanks to my partners past and present who pioneered this procedure: Alistair Karmody, Bob Leather, Ben Chang,

Historical Aspects of In-situ Bypass

- In 1958, Charles Rob did first with Karl Victor Hall as visiting fellow
- Robert Leather learned from Karl Victor Hall
- · Valve excision, blunt valve disruption and then valvulotomes used

Reasons to use In-Situ Technique?

Challenges of CLI

Benefits of in-situ **Obviates Size Mismatch**

- Better for Smaller Veins
- Less Warm Ischemia Potential Endothelial Preservation
- Less Thrombogenic
- Concerns re in-situ New/Difficult Technique
- Potential Risks with Valvulotomy Time and Learning Curve

What Do We Know About Distal **Bypass Surgery?**

Challenges of CLI

Relatively Unimportant Factors DIABETES DISTAL ARTERIAL CALCIFICATION OUTFLOW RESISTANCE BYPASS LENGTH

Relatively Important Factors VEIN QUALITY VEIN PRESERVATION MINIMIZE VEIN TRAUMA

Important Factors for a Successful In-Situ Bypass

- Knowledge GSV anatomy/Preop Vein Map
- Minimize Skin Flaps
- Vein Preparation/ Graded pressure
- Open or closed In-situ
- Specialized In-situ equipment helpful
- Sharp Mills and retrograde valvulotomes
- Duplex or Knowledge of "null" method
- Double Team reduces Operative Time

Saphenous Vein Anatomy (338 Venograms) *

- Greater Saphenous Vein (Single 38%/ Double 10%)
 - Thigh
 - Single 65% (Medial 60%, Lateral 5%)
 - Double 11%
 - Loop 15%
 - Calf
 - Single 45% (Anterior 41%, Posterior 4%)
 - Double 46%
- Valves: 6.3 + 2.8/ leg, 3 in thigh segment

***** JVS 1986; 3:273-83

Vein Mapping (Duplex)

Incision Location

- Thigh
 - Medial (InSitu Bypass)
 - Lateral (Excised, Prosthetic)

Calf

- 1 cm ant/post to vein
- Medial exposure of peroneal artery
- Skin bridges

 Maximize width from GSV exposure to distal AT/PT,DP

Incision Location

- Proximal
 - Sharp Dissection/ Minimize Bovie around Vein
 - Identify Vein First
 - Avoid Lymph Nodes: Medial vs Lateral Exposure
 - Avoid Flaps
- Distal
 - Standard arterial exposures
 - Incision to Expose Vein 1 cm posterior
 - Avoid Flaps

"In-Situ" Set

Vein Preparation

- Insitu vs Excised Vein
- Orientation of Vein: Reversed versus Orthograde (based on taper)
- Knowledge of Vein Anatomy
- Preoperative Mapping/Venography: Vein Quality
- Direct Assessment of Vein Quality: Distensibility / Appearance
- Atraumatic Technique

Proximal Valve Lysis

Here in the second seco

Proximal Valve Lysis

Proximal Valve Lysis: Antegrade Valvulotome

Proximal Valve Lysis

InSitu Bypass Technique: Thigh Valve Lysis

- Thigh
 - Proximal Valves: Direct Lysis/Antegrade Valvulotome
 - Leather Cutter: (>3mm) Expense/Availability
 - Lemaitre: (>4.5mm)
 - Small or Complicated Vein Use Retrograde (Modified Mills) Valvulotome *
- Calf-Foot
 - Retrograde Valvulotome

* Always Safest Method

InSitu Bypass Technique: Valve Lysis: Leather Cutter

e utility Valen catter bads catholier valence and a former were and a former in the same pains as		Valves, Participation of the enter para as to take	Sen Ver Vehro cater blades danse of i source of the valves and akin	e or tir catheter
--	--	--	--	----------------------

- Lysis before Proximal Anastomosis done
- Side Branch Access (@ knee)
- Requires Proximal Vein Distention
- Pressure Solution of Heparin 1000U, Papaverine (120mg) in 500 cc Dextran70 (300 mmHg)
- Avoid manual distention

Proximal Anastomosis

InSitu Bypass Technique: Lemaitre Valvulotome

Thrombosed Fistula

Check For Fistula in Thigh (Null Technique)

Retrograde Valvulotome

Retrograde Valve Lysis

Incise Valve not Cusp Watch For Side Branches Flat Side Anterior on Mills Dilate Before Manipulation Flow Should Be Linear at Completion

Distal Anastomosis

Assessment of Bypass Flow

- Intraoperative Doppler
- Intraoperative Duplex
- Intraoperative Angiography/Pressure Measurement
- Postoperative PVR/Duplex/Angiogram

OUR DATA

Total procedures: 19,391 from 1976-2024

In situ	8415	45.2%
Excised vein	5,407	30.1%
Spliced vein	1,697	7.6%
Prosthetic	3,872	19.4%
Op mortality	381	1.8%

Complications				
2.8%				
5.4%				
0.6%				
2.1%				
3.7%				
5.5%				
2.3%				
3.0%				
	2.8% 5.4% 0.6% 2.1% 3.7% 5.5% 2.3% 3.0%			

Key Steps in The In-Situ Bypass

- Knowledge of GSV Anatomy
- Pre-op Vein Map to Minimize Flaps
- Direct assessment of vein Quality Intra Op
- Graded Dilatation of vein (<300 mm hg)
- Dilate Vein before any Manipulation
- Access for "Closed Cutter" at Knee
- Specialized "in-situ set" Instrumentation

CONCLUSION

In-Situ Bypass is a durable procedure for limb salvage Closed in-situ bypasses have less wound complications but comparable patency and limb salvage to open in-situ bypass

> Questions darlinr@amc.edu 518-423-3494

Thank You!