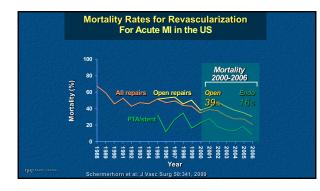
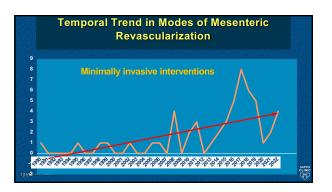
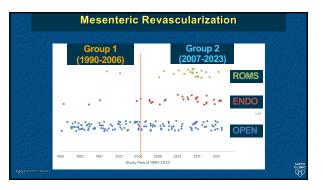

Endovascular Mesenteric Artery Revascularization: Has it Improved Outcomes of Acute Mesenteric Ischemia? Stents vs Covered Stents

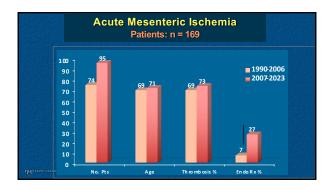
> Manju Kalra MBBS Professor of Surgery

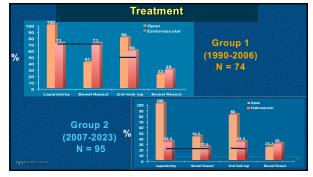
Division of Vascular and Endovascular Surgery Mayo Clinic, Rochester MN. USA.


Disclosures


No Financial Disclosures


Acute Mesenteric Ischemia Endovascular Treatment
 Unlike for CMI has not been widely adopted
• Urgency of the need for bowel assessment in


- severe AMI limits its applicability
- Requires advanced endovascular expertise
- Can be a prolonged challenging procedure with potential delay to laparotomy
 - Endovascular first strategy for AMI has been adopted by major centers





Mayo	Experience	•		
169 patients		Group 1 (1990-2006)	Group 2 (2007-2023)	P value
	Median age (IQR)	69 (58-78)	71 (63-81)	0.03
	Hypertension	57 (77%)	81 (85%)	0.17
Patients in Group 2	Hyperlipidemia	17 (23%)	70 (74%)	<0.001
	Smoking	50 (67%)	66 (70%)	0.79
Older (71 vs 67 years)	CAD	33 (45%)	51 (54%)	0.24
 Greater proportion on 	CVD	15 (20%)	28 (29%)	0.14
statin therapy	Atrial fibrillation	15 (20%)	31 (33%)	0.08
	h/o of CMI	30 (42%)	40 (42%)	0.96
Median age = 71 years	h/o intervention for CMI	13 (19%)	14 (15%)	0.37
→ = 60%	Median SVS score	10 (5-12)	10 (7-13)	0.23

		3	0-da	mortality
Univariate Analy	sis			Multivariate Analysis
	OR	95% CI	P value	ROMS (OR 6.6)
Female	0.47	0.2-0.9	0.04	(95% CI 1.7-26.6)
Dialysis dependent	21.6	3.3-425	0.006	Increasing Lactate
SVS score	1.2	1.1-1.3	0.001	(OR 1.5) (95% CI 1.2-2.0)
Lactate	1.4	1.2-1.8	<0.001	
ROMS		1.5-10.6	0.005	Higher SVS score (OR 1.2)
Bowel resection	2.5	1.2-5.4	0.01	(OK 1.2) (95% CI 1.01-1.3)
MAYO GLINIG	and a second		a gent	

Author / year	No. of	Patents		wel ction	Mortal	ity (%)	P- value
	Open	Endo	Open	Endo	Open	Endo	
Schermerhorn 2009	3380	1857	48%	28%	39%	16%	
 Possibly due to exclude pa sub-acute me 	tients	with	33%	14%	39%	25%	
ischemia?		10	46%	22%	33%	12%	
 Incidence of I 	lowoc		47%	26%	37%	16%	

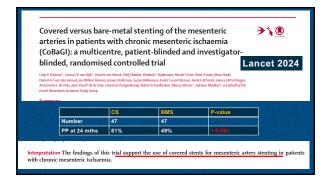
SIII	gie-co	enter R	enosp	ective	Dala		
Author / year	No. of	Patents	Bowel	resect	Mortal	ity (%)	P-
	Open	Endo	Open	Endo	Open	Endo	value
Arthurs 2011	14	56 Lap-69%	94%	84%	50%	36%	<0.05
Ryer (Mayo) 2011	49	17 Lap-71%	41%	71%	15%	23%	>0.05
Andraska 2022	120	28 Lap-26%					0.52
Rebelo 2022	27	17 Lap-41%	63%	18%	29%	30%	>0.05
Li 2024	37	21 Lap-35%	70%	35%	43%	19%	0.20
Vaddavalli (Mayo) 2024 ^{vie glasse}	127	31 Lap-32%	42%	23%	17%	23%	0.47

Endovascular revascularization vs open surgical revascularization as the first strategy for arterial acute mesenteric ischemia: A systematic review and

meta-analysis

Yadong Shi, MD, Boxiang Zhao, MD, Yangyi Zhou, MD, Liang Chen, MD, Haobo Su, MD, and Jianping Gu, MD, Nanjing, China

J Vasc Surg 2024


Conclusions: Compared with OSR. <u>EVR as the first treatment for arterial AMI may not decrease short-term mortality</u> os second-look laparotomy. Future multicenter randomized controlled trials are needed urgently to confirm these results. [Vars. <u>Surg</u> 2024; e1-11.]

vas. sug 2024 tett.) Keywords: Acute mesenteric ischemia; Endovascular revascularization: Open surgical revascularization; Meta-analysis Review

Covere	ed Ster	nt vs Ba	are Me	tal	
Author / year	No. of	Patents	Patency		P- value
	CS	BMS	CS	BMS	
Oderich 2013 (Mayo Clinic)	164	61	53%	28%	
Zhou2019	93	20	83%	65%	
Girault2021	86		76%		
Alnahhal 2023 (Cleveland Clinic)	168	22	68%	75%	

Covered Stent vs Bare Metal

- Adequacy of initial technical success
- Accuracy of stent placement
- Length of lesion
- Length of stent
- Caliber of delivery system

Summary

- Greater use of endovascular techniques for emergency mesenteric revascularization in past two decades
 Shorter ICU and hospital stay
 Similar early mortality and MAE
- Outcomes were dependent on severity of ischemia and patient comorbidities, not mode of mesenteric revascularization

CLINK CLINK

Consider Covered Stent when technically feasible

