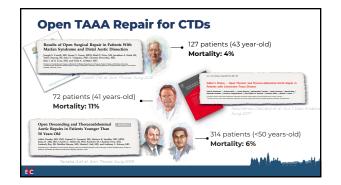
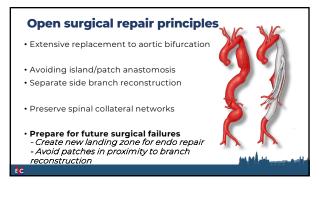
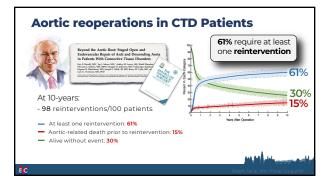
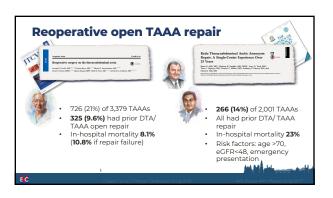
Value of F/B EVAR In The Management Of Failed Open Repairs Of Complex AAAs In Patients With Heritable Aortic Disease: Technical Tips

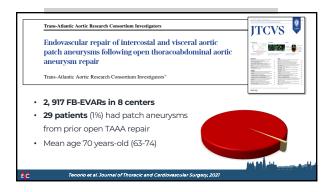
🕐 Maastricht UMC+

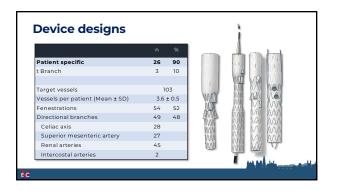

Heart+Vascular Center

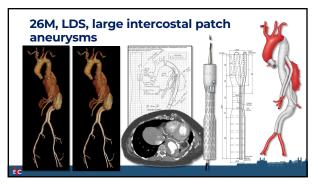

Barend M.E. Mees MD PhD FEBVS Professor of Vascular Regeneration and Repair Deputy Chair of Department of Vascular Surgery

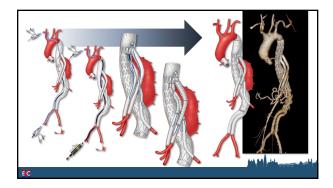

Maastricht University Medical Center+

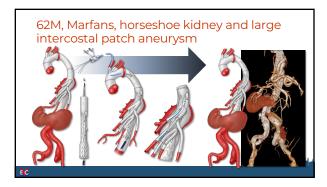

Gustavo Oderich Geert Willem Schurink Anna Prent Michael Jacobs



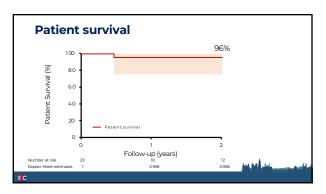


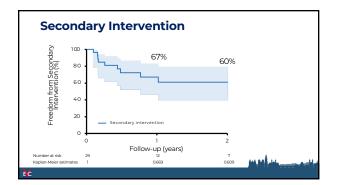


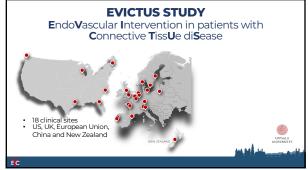



Patient characteristics

	n = 29	
Age, years (median, IQR 25%-75%)	70	63-74
Male gender	21	72
Hypertension	27	93
Cigarette smoking	18	62
Chronic obstructive pulmonary disease	11	38
Chronic Kidney Disease III-V	10	34
Congestive heart failure	7	24
Coronary artery disease	6	21
Cerebrovascular disease	4	14
ASA class ≥ 3	18	62
Connective tissue disorder	7	24







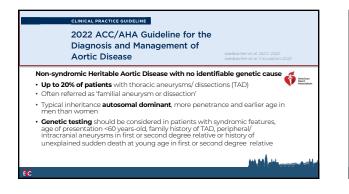
	MS n = 142	LDS n = 17	vEDS n = 12	
Age (years, IQR)	49 (38-58)	53 (44-58)	40 (28-75)	
Male sex	62%	53%	83%	
Hypertension	56%	59%	58%	
Renal impairment	11%	18%	0%	
Prior open aortic repair	115 (81%)	15 (88%)	6 (50%)	136 (80
Dissection	90%	88%	75%	
Degenerative aneurysm	10%	12%	25%	
Emergency indication	40%	24%	75%	

	MS n = 142	LDS n = 17	vEDS n = 12	
Proximal landing zone in surgical graft	56%	59%	42%	1
Distal landing zone in surgical graft	15%	6%	8%	
FBEVAR	24 (17%)	8 (47%)	4 (34%)	36 (21%
Parallel grafts	3%	0%	0%	
Debranching	31%	12%	17%	

eTable 1. Previous aortic s	urgery segm	ents		
	Marfan	Loeys-	Vascular	
	syndrome (n=142)	Dietz	Ehlers-Danlos syndrome	
	(n=142)	(n=17)	(n=12)	
Aortic valve replacement, n (%)	64 (45.1%)	6 (35.3%)	2 (16.7%)	
Ascending aortic repair, n (%)	103 (72.5%)	13 (76.5%)	4 (33.3%)	
Aortic arch repair, n (%)	40 (28.2%)	4 (23.5%)	1 (8.3%)	
Descending thoracic aortic repair, n (%)	47 (33.1%)	8 (47.1%)	4 (33.3%)	59 (35%)
Thoracoabdominal aortic repair, n (%)	14 (9.9%)	1 (5.9%)	1 (8.3%)	16 (9%)
Intra-renal acroc repair, n (16)	13 (9.2%)	2 (11.8%)	1 (8.3%)	

30-day	outcomes
--------	----------

	MS n = 142	LDS n = 17	vEDS n = 12
Primary technical success	99 %	100%	92 %
Mortality	2%	0%	17%
Conversion	2%	0%	0%
Acute coronary syndrome	0%	0%	0%
Stroke	6%	0%	17%
Spinal cord ischemia	1%	0%	0%
Kidney impairment	2%	0%	0%
		Olsson KW	


	MS n = 142	LDS n = 17	vEDS n = 12
Any secondary procedure	54%	59 %	42%
Proximal endovascular extension	5%	0%	0%
Distal endovascular extension	19%	18%	0%
Branch stenting	3%	12%	17%
Embolization	15%	24%	25%
Repair of different segment	8%	18%	0%
Conversion to open repair	9%	6%	0%
Repair of different segment	17%%	18%	0%

Conclusions

- **F/B EVAR** has its **value** in management of failing open TAAA repair in patients with heritable aortic disease, although very little data
- Preliminary experience shows **high technical success** and **low mortality**

m n Li

m na hu

Conclusions

- **F/B EVAR** has its **value** in management of failing open TAAA repair in patients with heritable aortic disease, although very little data
- Preliminary experience shows high technical success and low mortality
- Worse results in vascular EDS and better results in patients with **milder phenotypes** (MFS, ACTA-2, MYH-11, non-genetic) of heritable aortic disease

4

Conclusions

- Custom-made devices often unconventional
- Ideal patient has sealing zones based on open surgical grafts

Conclusions

- Custom-made devices often unconventional
- Ideal patient has sealing zones based on open surgical grafts
- Stay tuned to hear which **bridging stents** to use

